New preclinical data after neonatal administration in wild-type mice showed no detectable impact on survival, neurobehavioral functions and overall health, suggesting TSHA-102, engineered with novel miRARE technology, avoided toxic overexpression of MeCP2 within cells already expressing MeCP2
Data reinforce previous findings in Mecp2–/Y knockout mice demonstrating TSHA-102 regulated cellular MeCP2 levels and significantly improved survival, overall neurobehavioral function and growth
Data in neonatal mouse models highlight the potential of the miRARE technology to enable safe expression levels of MeCP2, which may address the risks associated with both under and overexpression of MeCP2 resulting from the mosaic pattern of MECP2 silencing in females with Rett syndrome
Dosing of the first adult patient with TSHA-102 in the Phase 1/2 REVEAL trial in Rett syndrome is expected in Q2 2023
“These encouraging new preclinical data in wild-type mice indicate that TSHA-102, engineered with our miRARE technology, avoided overexpression of MeCP2 within cells already expressing MeCP2, while maintaining normal survival, neurobehavioral function and overall health,” said
Preclinical data in neonatal wild-type mice suggest miRARE suppressed toxic overexpression after early intervention with TSHA-102:
- In wild-type mice treated with TSHA-102, new data showed no deleterious impact on survival, neurobehavioral functions and overall health, suggesting miRARE regulated expression of MeCP2 with the below results from the study:
- No toxicity relative to vehicle treatment
- No reduction in survival over 36-weeks
- No treatment effect on
Bird Score (a measure of Rett syndrome-like behaviors and pathologies) analysis relative to vehicle treatment - No impact on overall growth over the course of the study
This builds on prior preclinical data in neonatal Mecp2–/Y knockout mice showing miRARE regulated MECP2 expression levels in deficient CNS cells with early intervention of TSHA-102:
- In Mecp2–/Y knockout mice (mouse model recapitulating developmental, physiological, and behavioral features of human Rett syndrome) treated with TSHA-102 with the below results from the study:
- 47% survived the 36-week study vs a median survival of 8.1 weeks with vehicle‐treated knockout mice, representing a significant (p<0.0001) >4-fold extension of their lifespan
- Restoration of normal and faster-than-normal growth
- Aggregate
Bird Score was significantly improved at several time points, with a significant delay in the onset of severe Rett syndrome-like phenotypes, including the delayed average age of onset for severe clasping from approximately 7 to 21 weeks and severely abnormal gait from approximately 8 to 20 weeks
TSHA-102 is a self-complementary intrathecally delivered AAV9 investigational gene transfer therapy in clinical evaluation for Rett syndrome, a rare genetic neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene. TSHA-102 is currently being evaluated in the Phase 1/2 REVEAL trial in adult patients with Rett syndrome. The dosing of the first adult patient with TSHA-102 is expected in Q2 2023, with initial available clinical data, primarily on safety, anticipated thereafter in Q2 2023. TSHA-102 has received Orphan Drug and Rare Pediatric Disease designations from the
About
Forward-Looking Statements
This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as “anticipates,” “believes,” “expects,” “intends,” “projects,” “plans,” and “future” or similar expressions are intended to identify forward-looking statements. Forward-looking statements include statements concerning the potential of our product candidates, including TSHA-102, to positively impact quality of life and alter the course of disease in the patients we seek to treat, our research, development and regulatory plans for our product candidates, the potential for these product candidates to receive regulatory approval from the FDA or equivalent foreign regulatory agencies, and whether, if approved, these product candidates will be successfully distributed and marketed and the potential market opportunity for these product candidates. Forward-looking statements are based on management’s current expectations and are subject to various risks and uncertainties that could cause actual results to differ materially and adversely from those expressed or implied by such forward-looking statements. Accordingly, these forward-looking statements do not constitute guarantees of future performance, and you are cautioned not to place undue reliance on these forward-looking statements. Risks regarding our business are described in detail in our
Company Contact:
Director, Head of Corporate Communications
hcollins@tayshagtx.com
Media Contact:
carolyn.hawley@canalecomm.com
Source: Taysha Gene Therapies, Inc.